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Finkelstein's suggestion for a flexible logic is taken up in the context of his causal 
net theory. We interpret on the net certain concepts that are first expressed in 
terms of the canonical "flexible logic" of the macroscopic world, namely, the 
logic of sheaves over the manifold model, here taken to be flat. From this we 
infer a correspondence principle in the form of a simple (model-dependent) sem- 
antics which translates certain concepts between the purely quantum world of 
the net and the familiar classical-quantum hybridized world of the macroscopic 
model. As an application, we derive and solve the reticular version of the massless 
Dirac equation by analyzing the Dirac operator on the net, where its behavior is 
easily apprehended. 

1. INTRODUCTION 

A continuing series of works laid the foundations for a theory which is 
antecedent to both relativity and quantum theory and thereby achieves their 
fusion at a deep level (see in particular Finkelstein, 1969a,b, 1972, 1974, 
1987, 1988, 1989, and Finkelstein et al., 1974.) A fundamental step in the 
construction of this theory is the extension and generalization of the von 
Neumann interpretation of quantum mechanics in terms of a logic of (quan- 
tum) propositions, which is then employed to produce a quantal description 
of those entities which may be presumed to appear macroscopically as space- 
time points. The power of this idea is immediately apparent when it is 
combined with a causality requirement: for then the major kinematical fea- 
tures of relativity emerge spontaneously--this is achieved already in the first 
paper (Finkelstein, 1969a). In subsequent work (Finkelstein, 1987, 1990; 
Finkelstein and Hallidy, 1990), shortcomings of the original von Neumann- 
like quantum logics were isolated and repaired, a process culminating in the 
unveiling of a beautifully symmetric object, the extensor algebra (Barnabei 
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et al., 1985), which, when interpreted as describing a theory of "quantum" 
sets, shares many of the properties of ordinary set theory. The substratum 
of the world is then postulated to be a plexus of primitive spinor like "events" 
which can combine only according to the laws of quantum extensor logic 
together with a causal structure, which is also necessarily expressed in terms 
of the quantum logic. The challenge is to show how ordinary spacetime, 
with some version of quantum mechanics attached, emerges from this plexus 
as some kind of limit. A mechanism to account for the initial phase is 
convincingly argued in Finkelstein (1988, 1989). In this scenario, very 
roughly speaking, Cooper-like spinor-conjugate spinor pairs form as cooling 
takes place in the chaotic (but causal) primordial event-vacuum, and a 
transition is made to a new vacuum, the net. These bosonlike pairs transform 
as Lorentz vectors and, when aggregated in large numbers, form into vectors 
in a certain Minkowski space, which apparently corresponds to a local struc- 
ture on the classical limit manifold, such as the tangent space, or nuU- 
cone, at a point. The implementation of this scheme, which involves an 
intermediate Fock-like algebra, gives a convincing account also of the origin 
of such basic quantum mechanical items as the Heisenberg communication 
relations. 

The very success of these procedures in giving a good account of the 
local structure of classical spacetime (plus quantum mechanics) serves to 
underline the problem of finding a general principle of correspondence medi- 
ating between the rigid quantal world of the net and the more familiar (albeit 
chimerical) world of curvaceous classical spacetime (with quantum fields 
attached). One source of difficulty may be ascribed to the rigidity of the 
underlying q-set theory, or logic, itself. Finkelstein has argued the case for 
a "warped" or flexible logic at this deep level (Finkelstein, 1969b, Section 
III): "If a flexible logic is possible at all, it may be rich enough to account 
for much more of the phenomena we see at the higher levels than we usually 
regard as logical in origin." 

This remark foreshadows the most important development in modern 
pure ("classical") logic, which occurred in the year of its publication, 
namely, the invention by Lawvere and Tierney of topos theory. The moti- 
vation for this development lay within pure logic itself, where the notions 
of classical set theory had been found too rigid. For example, some models 
of ZF were found by P. J. Cohen in 1963 to falsify certain propositions (the 
axiom of choice, the continuum hypothesis), while other models had been 
shown by G6del in the 1930s to verify these propositions. Topos theory 
reformulates and generalizes set theory in a categorical setting, the objects 
in the categories of interest being akin to variable or parametrized sets. Such 
a category, called a topos, comes equipped with an internal logic which turns 
out to be strongly typed and intuitionistic. There are geometric aspects to 
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the theory which are surprising from the point of view of pure logic, being 
absent or invisible in the case of the topos Set, the category of ordinary sets, 
which one may think of as the category of "constant" sets, each object being 
"parametrized" by a single point. (The existence of these phenomena, and 
indeed of the whole theory of topoi, would seem to vindicate Finkelstein's 
"flow follows fracture" dictum in the field of logic, the fracture in this 
case having been occasioned by Cohen's discoveries.) In short, there are 
compelling reasons coming not from physics, but from classical logic itself 
to regard the topos notion as being now more fundamental than the set 
notion. [For full accounts of topos theory from various viewpoints, see Barr 
and Wells (1985), Bell (1988), Goldblatt (1984), Johnstone (1977), and 
Lambek and Scott (1986).] 

In this paper we attempt to follow rather informally some of the conse- 
quences of implementing Finkelstein's flexible logic suggestion in the context 
of his causal net theory. If one knew which topos to choose in place of Set, 
this could be effected by replacing classical set-theoretic notions wherever 
they appear in the construction of the sets ~ quantum sets correspondence 
by the appropriate topos-theoretic ones. One would then arrive at the notion 
of a quantum set theory (i.e., a type of Grassmann algebra) in the chosen 
topos. Our conjecture is that the true underlying topos (or topos-like struc- 
ture) may indeed lie beyond Set, and that if this is so, its discovery and use, 
as described above, would represent a significant step in the program, though 
beyond our present scope. Nevertheless, having the topos notion in mind, it 
is immediately apparent that the "macroscopic limit" topos is simply the 
category of sheaves of sets over the macroscopic limit manifold. Our modest 
goal in this first approach to the topos structure is to start with a flat, 
noninteracting model of the limit topos and to work back toward the Set- 
based net while keeping as far as possible within the language of this topos 
(i.e., sheaf theory). By so doing, we hope to have uncovered some traces of 
topos-like behavior to be used later in the search for a topos more flexible 
than Set upon which to base a more flexible net theory. We find that a 
judicious choice of model for the limit manifold enables us to infer a cor- 
respondence between certain macroscopic classical-quantum notions 
expressible in sheaf-theoretic terms and notions expressed in the very simple 
language of the net. (Henceforth we shall use Finkelstein's appellation "cq" 
in referring to the classical-quantum hybrid world of the limit manifold.) 
This correspondence is expressed in the form of a few very simple semantical 
rules whose existence raises the possibility of taking a familiar cq-notion (for 
example, an equation), of translating it into the language of the net where 
it is simpler, of carrying out a semantic analysis there (for example, solving 
the reticular version of the equation), and then of interpreting the result 
back in the ordinary cq-world. The extent to which the latter result agrees 
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infinitesimally with the usual one, obtained without leaving the cq-world, is 
presumably one measure of the degree of consistency between the choice of 
topoi upon which, respectively, the net and the cq-limit are modeled. In 
our case, these are the minimal choices respectively available: Set for the 
underlying topos, and the topos of sheaves of sets over a Minkowskian 
manifold for the cq-limit topos. In Section 3, we carry out this test for the 
massless Dirac equation and find a reasonably good first-order fit. 

Since the two topoi just mentioned are the only ones considered here, 
no knowledge of general topos theory per se will be required of the reader 
beyond that these categories are in fact topoi. A more fundamental investi- 
gation would presumably entail the deduction of a cq-topos as a limiting 
case of a more primitive underlying structure yet to be discovered. Such an 
investigation would require a more forceful use of topos theory. 

A brief mathematical glossary appears in the Appendix. 

2. A MODEL AND ITS CORRESPONDENCES 

Finkelstein's quantum version of set theory is constructed by modeling 
not only the usual set-algebra constructions, but also the more subtle global 
symmetries (extensionality, intensionality, etc.) of classical set theory and its 
logic within a slightly modified von Neumann framework. The result is a 
type of Grassmann algebra which is itself of necessity constructed/defined 
within the category Set of sets. If we were to supplant Set in this modeling 
process by some other topos, then the analogous algebra would presumably 
be required to incorporate an image of the type structure, etc., and its 
construction may have to be carried out internally within the very topos 
whose logic it purports to be quantizing. Alternatively, it may be sufficient 
to regard this algebra as some kind of meta-object, describable also in Set, 
as an extended version of the extensor algebra. In either case, the correspond- 
ing net construction, though capable perhaps of producing a richer cq- 
structure in the appropriate limit, would undoubtedly look rather different 
from the Set-based one. 

In the cq-worlG the parameter space over which everything is consid- 
ered to vary is the spacetime manifold itself, so the choice for the "cq-topos" 
of the category of sheaves of sets over the manifold is virtually mandated. 
Within the (intuitionistic) logic of this topos, one can with care construct 
internal categories of algebraic objects such as groups, rings, modules, etc. 
With enough care, these turn out to be identical with, respectively, the 
categories of sheaves of rings, modules, etc. With even more care, the con- 
struction of the usual topological fields such as the reals, the complexes, etc., 
when carried out within the logic, yields, respectively, the sheaves of germs 
of continuous functions into the usual reals, complexes, etc. [See the works 
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referred to above and their references, particularly Mulvey (1974) and the 
collection edited by Fourman et al. (1979).] Thus, a legitimate first step 
along the path to the underlying topos would be to express quantized (or, 
rather, second quantized) cq-notions in sheaf-theoretic language. [The idea 
of considering a model of classical spacetime, with its geometry, as a topos 
in which to model quantum phenomena is not new: see Josza's article in 
Fourman et al. (1979), where the emphasis is different from ours.] 

If we suppose classical spacetime to be modeled upon some manifold 
M, then our physics will be assailed by diseases in the form of singularities 
long before the need to quantize gravity becomes an issue. These singularities 
in the physics are of course attributable to the pointlike nature of the ele- 
ments of the substratum. There are (at least) two troublesome issues: first, 
each point is a potential singularity for some physically relevant quantity, 
and second, the notion of a point is itself naively classical and should be 
replaced by some quantized notion. A program to alleviate these problems 
suggests itself as follows: 

1. Consider each point as the locus of some singularity. 
2. Try to resolve the singularity in some geometrical sense and globalize 

the resulting local object. 
3. "Quantize." 

The resulting object should be interpretable as a "quantum" replace- 
ment for spacetime with all the singularities potentially arising from points 
having been disposed of. There is a standard method of coping with singular 
points in geometry, namely, "blowing up": roughly speaking, one smears 
over the offending point a space of directions through it. An obvious choice 
for the set of directions in our case is the set of rays in the tangent space 
T(x)  at x; or since we are interested in x as a quantized object (and rays in 
a complex vector space represent maximal information about the object 
being quantized, x in this case), a better choice is the set of rays in the 
complexified tangent space at x, the latter being denoted by Tc(x). Then the 
space of directions is precisely the projective space P(Tc(x)), which is to be 
"smeared" over the point x. Since we are considering each point of M, the 
globalized object is nothing but the projectivized complex tangent bundle 
over M, denoted 

re: P(Tc) ~ M 

This completes steps 1 and 2 and goes a little way toward accomplishing 
step 3, since some local quantization has already taken place. To continue 
further in the direction of step 3, suppose we now second-quantize some 
complex scalar field defined on P(Tc). Then, according to the view 
expounded in Selesnick (1983) (see also Mallios, 1990), the states of such a 
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field are represented by sections of a certain complex line bundle on 
P(Te). Now it is standard that the line bundle on P(Tc), denoted (9(1) by 
geometers (the twisting sheaf of Serre, the dual of the universal bundle) 
generates the group of complex line bundles on this space. (We do not 
distinguish between vector bundles and their sheaves of germs of sections.) 
Thus, any set of quantized complex fields can be expressed in terms of 
functions of sections of tensor powers of (9(1): in this sense (9(1) and its 
tensor powers @"(9(1) [conventionally written (9(n)] play the role of quan- 
tized coordinates, the entities which coordinatize or parametrize the fields. 
In this view, the sections of (9(1) itself represent single quanta of the basic 
bosonlike unit of "coordinatization," and the sections of (9(n) accordingly 
represent ensembles of these quanta. Now there is a sheaf-theoretic construc- 
tion which allows us to view these sheaves from the perspective of the class- 
ical spacetime M, namely, the pushout along ~. Thus, z.(9(n), the pushout 
of (9(n), is a sheaf over M whose sections in a sense represent ensembles of 
n "coordinate" quanta tied to the spacetime itself. However, it is a standard 
result that 

@nrc 

where @ denotes symmetric product. [See Hartshorne (1977), Proposition 
7.11, for a proof in the algebraic category. The symmetric nature of this 
object arises from the fact, pointed out in Selesnick (1983), that any tensor 
power of a line bundle is necessarily symmetric.] The Fock sheaf 

@ | @'re 
n_>0 n_>0 

[(9(0) denoting the trivial line bundle] is thus a globalization of the C- 
polynomial algebra over the generators of the complexified tangent bundle; 
that is, the fiber over a point x in M is the complex polynomial algebra over 
a basis of the complexified tangent space at that point and is isomorphic 
with the appropriate net algebra of Finkelstein (1989). The latter represents 
the quantized version of the future null-cone at x in Finkelstein's theory; 
thus we have established contact with that theory by working backward 
from the cq-model. This provides a basis upon which, using rather heuristic 
arguments, we shall erect a crude semantic correspondence between (Set- 
based) q-notions and cq-notions. (Whether or not we have now accom- 
plished step 3 is debatable.) 

We choose and fix a net element ~ containing an even number of spinor- 
conjugate spinor pairs and consider the basic event pair succeeding 4, 
namely ~~v <SZv #l, where E denotes a basic spinor, either T or ~, 8z= 
<Y~I, and the other notation is as in Finkelstein (1989), except that we denote 
conjugate spinors with a tilde, reserving asterisks for linear duals and sheaf 
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pullbacks. These second-grade plexors in Hermitianized and symmetrized 
form, when bracketed by (" I, correspond to the generators of the net algebra 
based at 4, which in turn correspond as above to local sections of the 
complexified tangent bundle of our model M at the point in M corresponding 
to ~ (i.e., the equivalence class of "paths" leading to ~ in the net). From the 
viewpoint of a putative variable q-logic, we may interpret this correspond- 
ence roughly as follows. Being itself a first-grade plexor, ~ is the "name" of 
a path in the net. The naming of this path (via the application of the ( .  I 
operator) fixes it within its q-"type," and hence it can now represent a point 
in M. Points in a space have a sheaf-theoretic interpretation for which some 
terminology is required. Let us denote by Shy(X) the category of sheaves of 
sets over the topological space X. If  Y is a topological space and f :  X --* Y 
a continuous function, then there exists a pair of adjoint functors 

f, 
( f , , f* ) :  Shy(X) ~ Shy(Y) 

f* 

given respectively by pushout and pullback alongf. In topos theory parlance, 
such a pair constitutes a "geometric morphism." Now denote by P the one- 
point space, and let x be any point in M. Then the inclusion {x} c~ M can 
be regarded as a map ix : P ~ M. Then, noting that Shy(P) = Set, we have 
a geometric morphism 

((ix),, (ix)*): Set --, Shy(M) 

for each xeM.  (For sufficiently nice AYs, including Hausdorff ones, these 
geometric morphisms actually characterize the points of M.) So ~ corre- 
sponds to the geometric morphism ((i~),, (ig)*) in the cq-logic, where we 
confuse the net element ~ with the point in M which corresponds to it, when 
the context is clear. Having fixed the point corresponding to ~ in M within its 
cq-type (it is of type "geometric morphism"), we now have the succeeding 
conjoined pairs of spinors (namely, ~Z~v ( ~  v ~1) con:esponding to ele- 
ments of quite a different cq-type, namely, elements of the set (ie)*Tc. This 
type-like distinction mirrors the one we have imposed at the q-level; for 
instance, if (8  z~ v (8  ~ v ~ll is thought of as a name of a vector (and a net 
element), then 5 z~ v (8  z v ~[ is a vector--not a name of one (and not a net 
element). 

In attempting to specify a local "semantics of correspondence," it will 
prove helpful to abuse one of the notations used in formal logic: we shall 
write ~expression~ to denote a cq-interpretation of expression. The implicit 
reading will be something in the nature of ~expression~--= "expression when 
viewed from the cq perspective, i.e., when viewed from afar." We shall regard 
~- ~ as linear whenever it is sensible to do so, because the linear operations 
are unified in this theory: for example, the microscopic q-superposition + 
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gives rise to and is identical with, the + of macroscopic cq-vector algebra. 
Returning to the generating second-grade plexor written above, we note that 
when viewed from afar, it appears as a vector in the EE ~ direction, leading 
onward from the point corresponding to ~, lying in the tangent space at this 
point. This incremental tangent is just derivation in the EE ~ direction at the 
point, and so corresponds to the reticular version of this operator, which we 
shall denote by A xx~ and discuss in the next section. Let us also write 
Fzz~(~) = ~ Z - v  (~Zv ~[. The indices are lowered here for the following 
reason. We have associated ~z- v (fiz v ~ I with the tangent 0 u = O/Ox~ at ~, 
where p = EE ~. The s p a c e t i m e  vector corresponding locally to this tangent 
is then the covariant infinitesimal vector xu (strictly d x ~ ) ,  and it is an inter- 
pretation of Fz~~ as an operator version of th is  vector which we seek. 
Considered affinely, once an origin is chosen in the tangent space, the vector 
#u and its dual dxu  are, for all local physical intents and purposes, identified 
there. [This identification is here a matter of geometric intuition. There are, 
however, compelling reasons to formally identify a g e n e r a l  finite-dimensional 
vector space with its linear dual in the context of extensor algebra. Cf. 
Barnabei e t  al.  (1985).] Thus, the simultaneous association "from afar" of 
fiz~ v (fiz v ~ [ with, on the one hand, a tangent at the point corresponding 
to ~ and, on the other hand, with the spacetime vector to which this tangent 
corresponds, can be expressed in the affine form 

+ ~ ( )1 = )1 

where we have identified the point in M corresponding to ~ with the origin 
0e in its tangent space (ie)*Tc. That is to say, when ~. ~ is evaluated in this 
tangent space, and the point corresponding to ~ is identified with the origin, 
we have 

E(A - r = - ) (  )1 = o 

Now we can lift the domain of the interpretation, i.e., the range of IF' 1, 
by noting that the assignment ~ ~ 0e can be viewed as a (bosonic) state 
representing vacuous positional information, the coordinate vacuum, and 
that the operators defined by 

[F(A ~ ~  - F=~)]E~ ] = E(A = ~  - rzz~)( ~)~ 

apparently annihilate this vacuum. Now it is easy to find a domain in which 
to interpret this. Consider the Schr6dinger representation on L2(~4), for 
instance: the destruction operators 

1 
a u -- _ 0 ~ - i x  u 

1 

annihilate an appropriate vacuum, r Following Finkelstein (1988, 1989), 
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let us introduce the reticular time constant 1~ by expressing the macroscopic 
time measurement of x ~ in terms of the corresponding discrete dimensionless 
net measurement (a count of steps, which we denote by x z~~) as 
x ~ = 13x zz-. Then, identifying a~ with the operator defined above, we are led 
to posit the following correspondence (which are "local to ~"): 

Cl. E~] = c0~ 
ca.  [A~I  =-ir~o~ 

c3. ~r=,] =(i/r~)x~ 

The understanding here is that the right-hand sides of the above equations 
refer to a particular representation of the canonical commutation relations. 
Owing to the celebrated uniqueness properties of such representations, it is 
possible to vary the domain of interpretation, which is the underlying vector 
space itself, without affecting the operator algebraic structure. Thus, one 
could carry out the interpretation in various Fock space models with cor 
taken as the appropriate vacuum and 0 ~, x~ defined in terms of the associated 
creation and destruction operators. In all cases, the algebraic structure will 
be essentially the same, since the vacuum is a cyclic vector for the algebra 
generated by these operators. 

In the next section, after discussing the operator A ~:z~, we present an 
argument that does not depend upon preordained Schr6dinger destruction 
operators to support C1-C3. 

To extend this C1-C3 correspondence, we specialize the model space- 
time M. We note first that the choice of a complex manifold structure for 
M would not be inappropriate, for then the tangent bundle (T) would itself 
be a bundle of complex vector spaces in an intrinsic way. If this choice is 
agreed upon, then there is a canonical complex model for Minkowski space- 
time, namely, its conformal compactification realized as the Grassmannian 
Gr2(C 4) of two-dimensional subspaces of C 4. This choice has an important 
property which, in a sense, globalizes the relation spinorxconjugate 
spinor = vector, which lies at the heart of the quantum condensation phenom- 
enon and is presumed to generate the macroscopic manifold structure from 
the net. Namely, 

T~,~*|  (1) 

where S (respectively S) denotes the appropriate spinor (respectively conju- 
gate spinor) bundle on M ~ G r : ( C  4) (Manin, 1988). Thus, the previous 
association of 8 z- v (8  ~ v ~] with an element in (i~)*T (i.e., a tangent at 4) 
now becomes an association [via the isomorphism of equation (1)] with an 
element of (i~)*(~*| This association can then be dissected further, 
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because sheaf pullback commutes with tensor product 

(6)*(~*| ~ (6)*(~*)| (6)*(s*) 

Thus, the vector-spinor conjunction (~z v 4[ (which is the name of a spinor) 
corresponds to an element in (ie)*(S*); that is, a spinor at the point corre- 
sponding to 4. In more colloquial, nontoposophical parlance, we may inter- 
pret ( ~  v ~] as an analogue of  the pairing (fiE, ~) which specifies an element 
in the fiber of  the bundle S* over the point corresponding to 4. (With 6z 
replaced by other inputs, including the fiz-, this would appear to represent 
a general interpretation of at least some of the paraphernalia associated with 
the notion of  a gauge interaction and, as such, agrees with that of Finkel- 
stein.) Sufficiently local successors to (fie v ~], namely ~Z~v (fiz v 4[, then 
correspond in this sense to fiber elements of  the form (6z -@3 z, 4) in the 
bundle S*|  The foregoing interpretation lies in, or is derived from, the 
cq-topos domain and, as such, must now be related to the domain used for 
~. ~ or an extension of  the latter. Before attempting this, it is worth noting 
that again there is a splitting up of  types as we move from the plexor domain 
to the cq-topos domain. Thus, v sometimes corresponds to the tensor pro- 
duct of sheaves and at other times does not, depending upon its context 
within a plexor. 

Now the domain for ~. ~ has been taken as some vector space (accom- 
modating a representation of the CCR). To extend it consistently to plexors 
of "fiber type," namely, (s v 4[, where s stands for ~z or 6 ~-, we seek a 
vector space which accommodates an analogue of  pairs (~s~, ~4] ). Recalling 
that ~. ~ is linear, we are led to adopt the following slight generalization: 

C4. [~{sv v l ] ] =M|  

where s denotes a plexor of  spinor type, v a plexor of vector type, and 
where the domain accommodating the right-hand side is, of course, implicitly 
determined. 

This completes our rather minimal local correspondence semantics for 
this model. We have in fact invoked two different kinds of semantics: an 
informal one, whose domain of interpretation is the language of the 
cq-topos and/or  its relatives, and a more formal one derived from it, 
namely, C1-C4. 

The rest of  the paper is devoted to a study of the massless Dirac equation 
using a combination of these semantics. 

3. THE DIRAC EQUATION 

We shall interpret the ordinary massless cq-Dirac equation on the net 
by pulling back (via the informal semantics) from a sheaf-theoretic version 
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of the Dirac operator available in our cq-model. A "semantic" or, to be less 
pretentious, verbal interpretation is then available, thanks to the limited 
language employed by the net. Using some elementary q-logic, this is used 
to concoct a simple solution to the reticular version of the Dirac equation, 
which is then interpreted back in the cq-world with the aid of the formal 
semantics. 

Reverting to equation (1), we note that 

f~l____ T* _-_.S| (2) 

where f~l denotes the bundle of 1-forms on M =  Gr2(C4). Consequently, we 
have two linear sheaf maps 

er: f~ l| --> 

given by the appropriate contraction when the isomorphism of equation 
(2) is invoked. Consequently, each generator of f~ 1 induces a linear map 
S* • S* ~ S@ S. With an appropriate choice of basis, these maps correspond 
to the analogues of the Dirac matrices (Manin, 1988). To transfer these 
notions back to the net, we note that the generators of f~ 1 correspond by 
duality to the "tangents" fix~ v (fix v 41 at the point corresponding to 4- The 
corresponding Dirac maps, denoted by 7zz~, must then, according to our 
informal semantics [in which the leftmost v in the plexor above corresponds 
to the | in equation (2)], act fiberwise on plexors of "fber-type" 
(8  zv v~[ as follows: 

v = v ( 3 )  

or, more generally, with ~ replaced by a general plexor of vector type. In 
this definition, we have identified the "fiber" of S with its dual in an obvious 
way, and we have used the standard inner product notation. 

In searching for a plexorial version, A sx~, of the cq operator ~ ,  an 
operator we have already named in C2 but not yet defined, we must confront 
a fundamental difference between the q and cq worlds. This resides in the 
fact that "observables," etc., of the q world should be associated with non- 
commuting objects, whereas the c in cq inevitably injects some commutativ- 
ity into underlying cq notions, even though these are partially hidden by 
the imposition of q structure (i.e., quantization, second quantization). [See 
Mallios (1990) and Selesnick (1983) for an attempt to uncover and make 
explicit this usually suppressed commutative structure in the context of 
second quantization.] Thus, in the case at hand, ~?~ acts on functions defined 
on neighborhoods of spacetime points (elements of a commutative algebra) 
and leaves the points themselves intact. The only observables available to 



1284 Selesnick 

the pure net-theorist, however, are the net plexors themselves, which combine 
according to the noncommutative rules of q-logic. Consequently, we must 
find a local analogue (at, or depending in some local manner upon, 4) 
of an algebra of differentiable functions built out of these elements. The 
considerations of Section 1 lead us to choose, with Finkelstein, the algebra 
C[Fo] of complex polynomials in the indeterminates F~ (a=EE~).  Then 
A ~ -  must be ordinary partial differentiation with respect to Fzz~, an opera- 
tion which can now be defined on any plexor of the form p(F~)(~) by using 
the product rule, where p is a polynomial in the Fo and the symbol (, whose 
order and syntax must be respected. The trailing strings of I's, which are 
determined by the simple syntax of brackets, are simply ignored in this 
notation. Thus, 

A ~ -  (p(r~)(4))  = (A~-P(F~))(~) 

[Note, in particular, that z,~~ zz~ o A 4 = A Fzz ~ (4) = 0. We emphasize that this 
definition of A ''~- depends upon ~; that is, it is local to ~.] 

This operator can now be applied to net elements (of vector type) 
succeeding ~. The result, in general, is a superposition of net elements: the 
net element suffers the destruction of certain pairs of nodes, and the resulting 
plexors are superposed. Thus, A zz~ acts on the net in an anticausal direction 
counter to the direction in which nodes are created by the F~. This is pre- 
cisely contrary to the analogous classical behavior of the operator ~,  which, 
when considered as a tangent vector on the manifold, points in the same 
direction as the direction of increase of xu--a rather tautological statement. 
This now accounts for the i in the expressions on the right-hand sides of C2 
and C3. For, suppose that instead of appealing to the SchrSdinger represen- 
tation in Section 1, we were to independently adopt the assignment 
[[F,:z~~ = axzy~~ for some a. Then, since the incrementation is assumed to be 
taking place in the tangent space, Xzz~ can be identified (as in the discussion 
following the definition of Fzz~ in Section 2) with the corresponding 
derivation 0 zz~ regarded now as a vector in the tangent space, not as an 
operator. The reticular increment induced by Fzz~ then corresponds with 
the tangent a~ zz- .  On the other hand, [AZZ~~ must correspond in the limit 
to the act of differentiation with respect to the spacetime variable correspond- 
ing to ~F~z-}; that is, it corresponds to (1/a)~ zz~ while maintaining the 
property, when considered as a tangent, of simultaneously pointing in the 
direction opposite to that of the tangent corresponding to the reticular incre- 
ment itself, namely, aO zz~. Thus, I / a = - a ,  and a=  • Choosing the plus 
sign now corresponds to specifying that the direction of incrementation is 
as expected. Readers who find these arguments convincing may now recon- 
struct the Schr6dinger vacuum, C1, etc., ab initio. 
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An analogue NN of the Dirac operator can be defined on the net elements 
based at 4 as follows: 

~N(<6 ~v V < p ( r ~ ) ( ~ )  LI ) =-- r ~ -  (<~ ~ V A ~ - p ( r ~ ) ( ~ ) [ )  

summing over repeated index-pairs as usual. In general, the image is not a 
net element, but near 4, the behavior of ~N is particularly pleasant. Namely, 
with a = E~Z2 we have 

~N(<8 ~ V <r,,(4)lL ) = r~(<s ~ v 41) 

= <3:c7 1 6:c3" ><6Xl v 4l (4) 

so we arrive back in the net, or die. This local effect of ~N lends itself to the 
following interpretation: Conjugate spinor successors 1;o the net elements 
<Fo(~) I [which, from afar, look like elements of the fiber of S* over the 
point corresponding to <Fo(~)I] provide instructions on whether to move 
back to the predecessor of <Fo(~) I or die (give 0) according to the rule 
given above. (Note that this is an anticausat operation.) 

So, to construct a plexorial solution (I)N to the massless reticular Dirac 
equation ANON = 0, we argue as follows. Suppose a plexor could be found 
to represent the universal absence of one or the other inputs of type E- ,  a 
sort of defect. Then insertion of this object into the net as an input (creating 
a successor) to certain nodes near 4 should yield the null instruction when 
the resulting plexors are properly superposed according to the dictates of 
causality. Then, when AN is applied to this object, and it is propagated back, 
it vanishes. The "proper superposition," which is where quantum and causal 
structure meet, is the key step here. 

A simple program to create such a defect and insert it after the net 
element 77, which combines elements of both classical and q-logic, might run 
as follows: 

begin 
destroy one of the inputs $ ~ or T ~ : that is, 

destroy an element of the set { $ ~} <J {t ~}; 
form a plexor which somehow describes this act of destruction; 
insert this plexor after 11 

end 

Now we attempt to fully quantize this program using Finkelstein's rules and 
remembering to superpose appropriate alternatives, since quantum inter- 
ference must always be occurring in the pure q-world. (Feynman and Hibbs, 
1965, Chapter 1.) 



1286 Selesnick 

begin 
find the appropriate destruction operators for (+ ~ [ v (T ~ [; 
find plexor by applying resulting operators to (~,~ [ v (T ~ [ 

and superposing the alternatives; 
make resulting plexor the causal successor to 11, 

superposing appropriate alternatives 
end 

To execute this program, note first that the appropriate destruction operators 
in the first step are precisely the ones associated with the fermion Fock space 
based on S*, which we denote by a(~ ~) and a(T~). [Thirring (1983), p. 21, 
but beware of the misprint on line 21 .] Applying these, we obtain 

a($~)(<$~ I v < T - t ) = < T ~  1-6* ~ 

a(1"~)(($  ~ I v ( T - l )  = - ( U  I -  - f i *~  

So the plexor we seek is their superposition: fit~_ fi$-i 
For the last step, let us first take 7/= 4: this gives the trivial solution 

((f i t~_ f~~)v ~[. Next, let 1/= ( F ~ - ( 4 ) [ .  If the defect is to appear after 
one of these events to be propagated backward by ~N, then there are only 
two proper causal alternatives, namely, that event and its companion on the 
same causal branch of the binary tree emanating from 4, since the other 
branch is causally independent. That is, only one of the pairs (T$~, TT-), 
($~-, +T ~) needs to enter the superposition at this stage; each choice gives 
a different kind of defect. 

Now, since it is apparent that the defect represents some kind of causal 
or anticausal disturbance in the normal progress of what macroscopically 
represents certain of the coordinates, it seems that the pair (chosen above) 
which contains the correspondent of the macroscopic time coordinate would 
be the one which, in the cq-limit, has a chance of producing a null or time- 
like quantum, whereas the other pair would be associated with something 
tachyonlike. Let us assume then that the first-named pair contains the time 
correspondent. Then the last step yields the plexor 

kI'/N ~ <(~ T~ -- ~$~) V (<r~-~ ( 4 )  "[- FT,[,~ ( ~)1)]  

We verify that this WN does indeed satisfy the reticular Dirac equation [el 
equation (4)] 

= <,s'r v ~ 1 -  <fit v ~;I 

=0 

These two local solutions are the only (nontachyonic) ones produced by this 
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direct defect insertion mechanism. They represent the alternatives: a defect 
appears at ~; a defect appears at either (Ft t~(~)l  or (F t ,~ (~) l ;  so to 
properly describe the defect, we should superpose these two solutions. The 
solution so obtained may now be interpreted in the cq-world of our model 
using our semantics if a minor adjustment is made. Namely, since the 
expression (Fzz~ (~)1 has no interpretation in our semantics (which is local 
to ~, this point being a successor), we simply drop the offending bracket 
from ~N. The resulting plexor is no longer tied as firmly to the net, but is 
still a solution to the general massless plexorial Dirac equation. Written in 
full, this solution is 

So 

r = ((~t~ _~,+) v (~ + I"t+-(r + rT,~(r I 

( i  t = [ 6 t ~ - 8 ~ ~ ] |  l + ~ - ( x t t ~ + x t , ~ )  w~ byC1-C3 

We can legitimately write this last expression as 

(2+5 m (x"t- +x t *+ ) )  ([[6T~ - O~]]| 

if we specify further that the | in C4 is to be taken over the algebra 
generated by the commuting operators xu, which generate a subspace of the 
representation accommodating the vector part of the image of ~. ~ by acting 
on ro~, and which have a natural action on the spinor part inherited from 
the module structure on the associated sheaf. Now, choosing the basis 
~8T~~| ~8+~~| (in this order) in the subspace spanned by them and 
letting the expectation values x~z- ~ 0, we may write the classical limit 
locally as 

(~) i ( ) e x p i  [ [ ~  exp ~- (xtt~ +xt+~) + O 1 ~ (xtt~ +x+~~ ) (5) 

If we take 1"i'-=0 and t$~ =3, then 

1 
(Xo + x3) = t - z, in net units, 

= p pX "u 

where p"= (1, 0, 0, 1) and x ~= (t, x, y, z), in which case, with li = c= 1, the 
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first summand on the right-hand side of equation (5) is a solution to the 
Weyl equation 

(i0,- ~" p)u = 0 

and so represents a negative-energy massless Dirac fermion. The other sum- 
mand is a solution to 

(i~t + ~" p)u = 0 

and so represents the corresponding particle with opposite spin. 
Thus, in the continuum limit, we get a superposition of the two possible 

states of a massless antifermion moving along one of the axes, at least locally. 
[The fact that antiparticles emerge from our "semantic" argument should 
not be surprising in view of the anticausal interpretation we have given 
to the N operator: the positive-energy ptexor analogue with signs of 
Fzx-(~) reversed is, of course, also a solution.] 

It is worth remarking that since the plexorial solution is properly to be 
regarded as lying in a space of qets, it is afield, in Finkelstein's sense. 

(Nonlocal solutions to the reticular equation can be found by analogous 
arguments.) 

4. CONCLUSIONS 

A significant feature of the cq-topos, topoi in general, and, indeed, of 
the world itself is the profusion of types absent from Set. It is possible that 
this proliferation of types is an artifact of the q---,cq transition itself, a 
breaking of the type-symmetry which may exist in the pristine q-world, in 
which case Set may well be good enough. Indeed, we have found that at least 
for our interpretation of the massless Dirac equation, reasonable consistency 
obtains when it is assumed that the theory of the Set-based net gives rise in 
the cq-limit to the topos of sheaves of sets over a model of Minkowski 
space; and it seems likely that the Set-based net will also prove capable of 
generating gravitational curvature viewed on the net as a flow of one type 
of spin. But whether Set-based models can produce the full panoply of the 
world and its "types" (gauge interactions, fermion generations, possible 
Higgs fields, etc.) is another question, and one which will undoubtedly 
require a large effort to settle. 

In the meantime, a search for other possible foundational topoi (or 
relatives of topoi) would seem to be in order, in which case analogues of the 
pseudosemantics given here for curved interacting models may prove useful. 
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APPENDIX: SOME MATHEMATICAL TERMINOLOGY 

Presheaves [Bredon (1967), or the works on topos theory already cited] 

A presheaf A on a topological space X is an assignment to each open 
U c X  of a set A(U) and to each pair U c  V of  open sets of a function 
Puv: A ( V )  ~ A(U), called "restriction," in such a way that 

P1. pv, v = 1 
P2. pu, vpv, w=Pu, w, when U c  V c  W 

Thus, a presheaf imitates the behavior of  a family of functions defined 
on open sets. Indeed, starting with a presheaf A on X, one may produce a 
topological space d ,  and for each open U c X ,  a map 

cry: A(U) ~ F(U, W) 

(where the latter denotes a certain family of  continuous functions), which 
commutes with restrictions in an obvious way. Specifically for x~X, let 

dx--li m{A(U) l U x} 

;U {A(U)I 
where f o r f e A ( U )  and g e A ( V ) ,  f~g means that 

Pw, u~ v ( f )  = Pw.w v(g) 

for some open W~ U ~  V such that x e  W. Then, as a set, 

d = U d x  
x 

and we define a topology on d as follows: F o r f ~ A ( U )  and x~ U, let [ f ]~ 
denote the 2 equivalence class o f f ( t h e  "germ" of f a t  x). Then the topology 
on d is generated by basic open sets of the form {(x, [ f ] x ) Ix ~  U}. With 
F(U, d )  defined to be the set of continuous sections of this structure [i.e., 
continuous maps s: U ~  d such that s (x)eNx] ,  o'v is defined by 
cry(f )(x) = [ f ]~ ,  x e  U. 

Sheaves [Bredon (1967), or the works on topos theory already cited] 

In the discussion above, the map zc: d ~ X  given by re(x, [ f ] ~ ) =  x can 
be shown tc be a local homeomorphism. In general, a local homeomorphism 
p : Y ~ X is called a sheaf The fibers (which are easily seen to be relatively 
discrete) are called the stalks of the sheaf. (Usually there is additional alge- 
braic structure in the stalks with concomitant assumptions concerning the 
"horizontal"  continuity of  the algebraic operations, but we shall ignore this 
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possibility here.) Thus, a presheaf A gives rise to (or generates) a sheaf d .  
This process is often referred to as the "sheafification" of A. Returning to 
the sheaf p, let F(U, Y) denote as before the set of continuous sections of 
p over U. Then the assignments U ~  F(U, Y), with ordinary restriction, 
constitute a presheaf which satisfies in addition the following "collation" 
properties: 

Sl. If  U=U~U~ with U~ open, and s, teF(U, Y) are such that 
s] U~ = t[ U~ for all a, then s = t. 

$2. Let { U~} be a collection of open sets in X, and let U= ~)~ U~. If  
s~eF(U~, Y) are given such that s~[ U ~  Ut3=s~[ U~c~ U~ for all 
a, fl, then there exists an element s~F(U, Y) with s[ U~=s~ for 
each a. 

Reverting to the presheaf A, let us suppose that it satisfies the analogues 
of S1 and $2. Then it can be shown that the ov are in fact isomorphisms. 
Thus, a presheaf satisfying S 1 and $2 can be realized precisely as the presheaf 
of continuous sections of a sheaf; consequently, the distinction between such 
presheaves and "spatial" sheaves is often not made. We note that as a 
consequence of the isomorphisms, a sheaf may be regenerated from its pre- 
sheaf of sections. 

The sheaf ~ of germs of continuous sections of a locally trivial n- 
dimensional k-vector bundle F, k = C, ~ . . . . .  has the property that there 
exists an open covering { U} of X such that for each U, 

F(U, ~-)-~ | C(V, k) 

where C(. ,  k) denotes continuous functions into k. One observes that this 
sheaf preserves the action of the bundle's Cech cocycles so that the bundle 
may be reconstructed from its sheaf of germs of sections and, moreover, from 
the algebraic structure of the set of sections; these structures are essentially 
equivalent. [For a very general treatment of geometry from this point of 
view, see Mallios (1991).] 

The family of presheaves over a topological space X, with morphisms 
defined in an obvious way, constitutes a category we denote by Pre(X). Any 
continuous function f :  Y --~ X, with Y another topological space, induces a 
pair of (adjoint) functors: 

f , :  Pre(Y) ~ Pre(X) 

called direct image or pushout, defined for a presheaf A on Y by 
(f,A)(U)=A(f-I(U)) for U open in X, and 

f * :  Pre(X) ~ Pre(Y) 
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called inverse image or pullback, defined for a presheaf B on X and V open 
in Y by 

(f*B)(V) = li__im{B(U)If(V) ~ U and U open in X} 

These functors can be defined similarly on the respective full subcategories 
of sheaves, the first definition remaining unchanged, but the second requiring 
sheafification. 

Topoi (See references already cited) 

A category E is an elementary topos if it satisfies: 

T1. E is finitely complete. 
T2. E has exponentiation. 
T3. E has a subobject classifier. 

The second condition means roughly that for every pair a, b of objects, 
there is an object b a corresponding to Horn(a, b) in such a way that canonical 
isomorphisms Hom(e • a, b) - Hom(c, b a) obtain for all c. 

The third condition says essentially that there exists an object f~ in E 
such that for any object a, the subobjects of a can be canonically realized in 
Horn(a, ~ )  and conversely. That is, sub(a)---Hom(a, ~ )  in a canonical 
fashion. 

Examples include Set, Shy(X) for X a topological space and the 
category Set c~ of contravariant functors from any small category C to Set, 
an example which includes Pre(X). 

It follows from T1 that any topos has a terminal object, usually denoted 
by 1 ; this is the object specified up to isomorphism by the property that for 
any object a, there is a unique morphism a ~ 1. Thus, any object is "fibered" 
over 1, and any morphism respects this fibering. In Set, 1 is the one-point 
space, so this fibering is rather uninteresting. Note, however, that 
sub(l) ~ f~ = 2, the two-point space (a Boolean algebra). In a general topos 
E, we still have sub(1)-Hom(1,  f ~ ) ~ ,  but the latter may have a more 
complex structure being interpretable within E as a complete Heyting alge- 
bra. Thus, the fibering over 1 may be more interesting. This is one sense in 
which objects of E resemble "parametrized" sets. 

An internal logic may be associated with any topos which turns out in 
general to be a type theory taking truth values in ~:~. [For a significant 
application of this logic in the case of Shy(X), see Mulvey (1974).] 
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